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Abstract: Neuro endocrine tumor (NET) is one of the most common cancers leading to death worldwide. Many studies 

have emphasized the importance of Ki-67 as the proliferation marker in the neuro endocrine tumor. Automatic Ki-67 

assessment is very challenging due to complex variations of cell characteristics. In this paper, we propose an integrated 

learning based framework using Fuzzy C means clustering (FCM) for accurate automatic Ki-67 counting for NET and 

to localize both tumor and non-tumor cells. Unlike the non-fuzzy clustering algorithms, FCM is less sensitive to noise 

and give better results for overlapped data sets. For feature selection t-test algorithm is used. The t-test has been used to 

rank features for microarray data. For multi-class problems, t – statistics value for each gene of each class is calculated 

by evaluating the difference between the mean of all the classes, where the difference is standardized by the within 

class standard deviation. The automatic Ki-67 counting is quite accurate compared with pathologists’ manual 

annotations. This is much more accurate than existing methods. 
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I. INTRODUCTION 
 

Neuro endocrine tumor (NET) is one of the most common 

cancers leading to death worldwide. Personalized 

diagnosis and treatment have significant influences on the 

survival of the NET patients. Recently, Ki-67 proliferation 

index, which is represented as the ratio between the 

numbers of immunopositive tumor cells and all tumor 

cells, is increasingly considered as a valid biomarker to 
evaluate tumor cell progression and predicting therapy 

responses [1]. Manual Ki-67 assessment is subject to a low 

throughput processing rate and pathologist-dependent bias. 

Computer-aided pathological image analysis is a 

promising approach to improve the objectivity and 

reproducibility. However, it is difficult to access automatic 

and accurate Ki-67 counting in digitized NET images, 

since the complex nature of histopathological images, such 

as variations of image texture, color, size, and shape, 

presents significant challenges for accurate automatic Ki-

67 counting. In addition, tumor and nontumor cells are 
usually clustered such that the nontumor cells are also 

counted using many traditional methods, which lead to 

large counting errors. 
 

In Ki-67 staining for NET, the color of immunonegative to 

immunopositive tumor cells ranges from blue to brown in 

terms of the stage of Ki-67 proliferation. Many 

computerized methods rely on the color feature to detect 

and classify cells for Ki-67 scoring.  

 

 

Al-Lahham et al. [1] first applied K-means clustering to a 

transformed color space, and subsequently used 

mathematical morphology and connected component 

analysis to segment and count cells on Ki-67 stained 

histology images. However, it is difficult for these 

methods to differentiate tumor from non-tumor and to 

handle touching cells. Recently, Nielsen et al. [2] first 
used a MART1 verification strategy to select tumor areas, 

and calculated cell areas and irregularity to classify 

positive and negative tumor cells that are obtained by 

using intensity-based thresholding functions. In order to 

handle touching cells, Loukas et al. [3] detected all cells 

using a Laplacian-of-Gaussian (LoG) filter followed by a 

distance map transformation for cancer cell counting, and 

then applied principal component analysis to a 

transformed color space for immunopositive and 

immunonegative cells.  
 

Markiewicz et al. [4], [5] employed the watershed 

algorithm to separate touching cells and a support vector 

machine (SVM) classifier to differentiate immunopositive 

from immunonegative cells, and similar methods are also 

presented in [6] and [7]. However, these methods cannot 

precisely differentiate tumor from non-tumor cells and 

separate touching cells simultaneously. The Aperio image 

analysis software is utilized in [8] for the assessment of 

Ki-67 proliferation index, but the nontumor cells such as 



IARJSET  

 

ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

 

International Advanced Research Journal in Science, Engineering and Technology 

National Conference on Emerging Trends in Engineering and Technology (NCETET’16)  

Lourdes Matha College of Science & Technology, Thiruvananthapuram 

Vol. 3, Special Issue 3, August 2016 

Copyright to IARJSET                                                  DOI   10.17148/IARJSET                                                                         64 

lymphocytes and stromal cells need to be excluded 

manually, and therefore it is not completely automatic. 

Besides the aforesaid methods, more general and 

sophisticated cell detection algorithms can also be used to 

estimate Ki- 67 proliferation index. A K-nearest neighbor-

based graph is proposed in [9] for Ki-67 hot spots 

detection on glioblastoma. Watershed and its variants are 

another popular group of cell detection and segmentation 

methods. For cells that usually exhibit circular or 
approximately circular shapes, radial voting has been 

widely used. Parvin et al. [10] proposed an iterative radial 

voting (IRV) algorithm based on oriented kernels to 

localize cell nuclei, in which the voting direction and areas 

are dynamically updated within each consecutive iteration.  
 

A computationally efficient single-pass voting (SPV) for 

cell detection is reported in [11], which applies mean shift 

clustering instead of iterative voting to final seed 

localization. The aforementioned general cell detection 

and segmentation algorithms are not specifically designed 

to calculate Ki-67 proliferation index. The non-tumor cells 

such as lymphocytes, stromal, and/or epithelial cells thus 

often need to be excluded manually. Meanwhile, 
additional steps need to be designed to separate 

immunonegative and immuopositive tumor cells. In this 

paper, we propose an integrated learning-based algorithm 

(see Fig. 1) for automatic scoring of Ki-67 proliferation 

index of NET, with addressing the problems earlier 

simultaneously. In order to accurately and simultaneously 

localize a large number of cells, we propose a robust and 

efficient fuzzy C means algorithm to detect cell seeds 

(geometric centers). Then, an efficient online sparse 

dictionary learning algorithm is applied to select a set of 

representative training samples. Finally, tumor and non-

tumor cells are separated by a trained SVM classifier with 
both the cellular features and regional structure 

information. The Ki-67 proliferation index is calculated 

based on the classification results of immunopositive 

(browncells) and immunonegative (blue cells) tumor cells. 

 

II. METHODS 
 

Our novel integrated learning-based algorithm for 

automatic Ki-67 scoring of NET contains the following 

steps: 1) Robust cell detection and boundary delineation 

followed by cellular features extraction. 2) A learning-
based region segmentation algorithm is used to generate a 

probability map to differentiate tumor and non-tumor 

regions. 3) Both the cellular features and regional structure 

information are combined to provide accurate tumor cell 

detection. 4) The Ki-67 proliferation index is finally 

calculated using a classifier with color histograms to 

separate immunopositive (brown cells in Ki-67 staining) 

and immunonegative (blue cells in Ki 67 staining) tumor 

cells. The whole algorithm flowchart is shown in Fig. 1. 

 

A. Automatic Cell Detection 
Robust cell detection is achieved by finding the geometric 

centers (seeds) of the cells. SPV in [11] localizes the seeds 

by performing a gradient magnitude-weighted majority 

vote, but it is not able to efficiently handle cell size and 

shape variations, since its single voting area and mean 

shift clustering with a unit bandwidth are not appropriate 

for different types of cells in one image. For a specific 

pixel, SPV only sums its own votes without counting those 

votes from its neighbors, which are important in localizing 

cell seeds.  

In addition, the gradient magnitudes are sensitive to noise, 
and pixels inside the cells may have much smaller 

magnitudes. Intuitively, the pixels close to cell centers 

should obtain higher weights than those near cell 

boundaries. Based on these observations, we introduce a 

region-based hierarchical voting in a distance transform 

map, which applies a Gaussian pyramid to the voting 

procedure to handle scale variations. 

 

 
Fig.1. Workflow of the proposed automatic Ki-67 

proliferation    index scoring system 

 

Let T(x, y) denote the original image, and ∇T(x, y) be the 

gradient, for each pixel (x, y) at layer l the proposed cell 

detection algorithm defines its cone-shape voting areas Al  

with vertex at (x, y) and votes along the negative gradient 

direction:  

 

 
 

where θ represents the angle of the gradient direction with 

respect to x- axis. A confidence map V (x, y) is calculated 

by weighting the distance transform map with a Gaussian 

kernel  g(m, n, μx, μy, σ) 
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Fig. 2. Procedure of hierarchical voting-based seed detection (a) Illustration of voting area and direction, (b) original 

image, (c) distance map, (d) confidence map, (e) mean-shift clustering (the circle represents one point and the arrow 

denotes the mean-shift vector) on the final confidence map, (f) final seeds. 

 

where S represents the set of all voting pixels, Al (m, n) 

denotes the cone-shape voting area with vertex (m, n) at 

layer l, and it is defined by the radial range (rmin, rmax) and 
angular range Δ, Fig. 2(a). I(x) = I[(x, y) ϵ Al (m, n)] is the 

indicator function, and Cl (x, y) represents the distance 

transformation map at layer l, which can be the Euclidean 

distance transform. The isotropic Gaussian kernel is 

parametrically defined with  
 

 
 

and scalar σ, which is used to encourage the voting toward 

the cell central regions. Fig. 2(c) shows that pixels with 

higher Cl (x, y) values near the geometric center of a cell 

will enhance their contributions in (1). For each pixel (x, 

y), (1) provides a weighted sum of all the voting values 

created by its neighboring pixels whose voting areas 

contain (x, y) [Fig. 2(a)], instead of only counting those 
votes created by its own. After the confidence map is 

generated [Fig. 2(e)], fuzzy C means clustering is 

employed to calculate the final seed for each individual 

cell and segmentation, Fig. 2(f). 

 

B. Fuzzy C means clustering 

Fuzzy c-means (FCM) is a method of clustering which 

allows one piece of data to belong to two or more clusters. 

This method is frequently used in pattern recognition. It is 

based on minimization of the following objective function: 
 

,                 (2) 
 

where m is any real number greater than 1, uij is the degree 

of membership of xi in the cluster j, xi is the ith of d-

dimensional measured data, cj is the d-dimension center of 

the cluster, and ||*|| is any norm expressing the similarity 

between any measured data and the center. Fuzzy 

partitioning is carried out through an iterative optimization 
of the objective function shown above, with the update of 

membership uij and the cluster centers cj by: 
 

,         
 

This iteration will stop when , 
where ε is a termination criterion between 0 and 1, 

whereas k is the iteration steps. This procedure converges 

to a local minimum or a saddle point of Jm. 

    The algorithm is composed of the following step: 

 

1.Initialize U=[uij] matrix, U(0) 

2.At k-step: calculate the centers vectors C(k)=[cj] with U(k) 

 

      (3) 
 

  3.Update U(k) , U(k+1) 
 

(4)
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4. If || U (k+1) - U (k) ||<  then STOP; otherwise return to 

step   2. 

 
Compared to mean shift clustering, fuzzy C means gives 

best result for overlapped data set and comparatively 

better than mean shift algorithm and unlike mean shift 

where data point must exclusively belong to one cluster 

center here data point is assigned membership to each 

cluster center as a result of which data point may belong to 

more than one cluster center. 

 

C. Training Sample Selection and Online Dictionary     

Learning 

Based on the results of cellular segmentation, a classifier 
can be trained to determine the segmented cell category 

(tumor or non-tumor cells) with the following cellular 

features in (listed in Table I Stage I): geometric 

descriptors, color intensity, and cell shapes that are 

represented by Fourier shape descriptor [12]. In total, we 

have extracted p = 5 + 9 × 3 + 80 = 112 features, where 3 

represents R,G, and B color channels, and 80 denotes  the 

first 20 harmonics (each corresponds to four coefficients) 

that are chosen in the Elliptical Fourier transformation. 

 

For more efficient and robust training, we propose to 

choose a set of representative samples that can 
approximate the entire training set. This is a data summary 

problem that can help to reduce the number of training 

samples, improve the computational efficiency, and more 

important, to increase the robustness by removing outliers 

from the original training set. 

 

 
 

A K-selection dictionary learning algorithm is chosen to 

select K representatives {υk ∈ RWx1} to form a dictionary 

Φ ∈ RWxK  from the original dataset: 

 
 

where υK  is the kth basis vector selected from the original 

training sample set, fi ∈ RWx1 denotes the ith feature 

vector, ξi ∈ RKx1  is the sparse coefficient with a weight θ, 

and ei ∈ RKx1  represents the distance between fi and the 

basis vectors. Unlike the popular sparse dictionary 

learning method KSVD, where the dictionary bases are not 

consisted with the original samples, (5) enforces the bases 
to be directly selected from the dataset. 

 

The training data often do not come in one batch. Instead, 

they are often collected from different pathologists in 

different institutes in a sequential mode. It is not only time 

consuming but also impractical to retrain the dictionary 

whenever new training samples arrive. To deal with 

training in a sequential mode, the dictionary Φ is required 

to be online updated for classification. Recreation of the 

dictionary using the whole dataset including the old { fi }, i 

= 1, 2, . . .,N and new { fi
new}, i = 1, 2, . . .,M data are 

neither efficient nor feasible. Because the selected K 
representatives can efficiently describe the old dataset, it is 

sufficient to evaluate whether or not Φ are good 

representatives for { fi
new}. Thus, we can solve the 

optimization problem on a reduced dataset: 

 

 
 

where { fi
new}, i = 1, 2, . . .,M are the new data, and { 

fi
new}, i = M + 1,M + 2, . . . , M + K are the previously 

selected representatives Φ.K’ denotes the number of the 

representatives need to be selected for the new dataset that 

contains both old and new training samples. The data size 

in (6) is M + K which is much smaller than M + N (N 

represents the size of the
 
original training dataset), and 

hence the optimization problem in (6) can be solved more 
efficiently. The online learning strategy enables the 

dictionary to be properly scaled up to represent a dynamic 

set of samples while still keeping the efficiency. 

 

D. Three-Stage Learning Based Classification  

After an accurate segmentation and dictionary learning of 

all the cells in NET, a three-stage learning-based scheme 

combining cellular features and regional structure 

information is designed to differentiate tumor from non-

tumor cells, and immunopositive from immunonegative 

tumor cells for accurate Ki-67 counting. The reasons why 
we use multiple stages to calculate Ki-67 proliferation 

index are: 1) Speed: first, it is much easier and faster to 

compute cellular features in Stage I than the texture in 

Stage II.  Second, many typical non-tumor cells will 

achieve relatively low-category probabilities using the 
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simple cellular feature-based classifier in Stage I and can 

then be removed to avoid further processing. The 

subsequent classifiers will only need to focus on difficult 

cases. This cascade pipeline structure can dramatically 

improve the speed. 2) Flexibility: the feature computation 

in Stages I and II are independent and either one can be 

replaced with other methods without changing the whole 

framework. 3) Evaluability and clinical purpose: in this 

pipeline framework, all intermediate results can be easily 

exported and presented to doctors for evaluation and 

clinical purpose. 4) Scalability: we have specifically 

designed this three-stage pipeline structure instead of an 
integrated module like classification tree considering 

future parallel implementation using grid and/or cloud. 

 

Stage I: As shown in Table I, 112 features are extracted 

for each sample. In order to select the most discriminative 

features for cell classification, T-test algorithm is 

employed. 

 

E. T-test Algorithm 

The most common type of t-test is often used to assess 

whether the means of two classes are statistically different 
from each other by calculating a ratio between the 

difference of two class means and the variability of the 

two classes. The t-test has been used to rank features for 

microarray data. For multi-class problems, Tibshirani et al 

calculated a t-statistics value for each gene of each class 

by evaluating the difference between the mean of one class 

and the mean of all the classes, where the difference is 

standardized by the within-class standard deviation. 
 

 
 

Here tic is the t-statistics value for the i-th gene (feature) of 

the c-th class; is the mean of the i-th feature in the 

c-th class, and is the mean of the i-th feature for all 
classes; xij refers to the i-th feature of the j-th sample; N is 

the number of all the samples in the C classes and nc is the 

number of samples in class c; Si is the within-class 

standard deviation and S0 is set to be the median value of 

Si for all the features.  
 

 
 

To calculate the T test, one need to understand the mean 

(x), variance (s2) and normal distribution. The t values are 

obtained between 0 and 1. The obtained t score is assigned 

to probability value (p value). Then the p value is sorted in 

the ascending order to select the most discriminative 5 to 6 

features with highest probability. 

 

Stage II: In Stage I, only cellular features are considered, 

and some non-tumor cells (like lymphocytes) can be 

classified as tumor cells by mistake. The lymphocytes 

usually exhibit certain structural pattern on the specimens, 

which can be described with local structural features. To 

improve the classification accuracy, texton [13] feature is 

utilized to model the different structural level features 

between non-tumor and tumor regions. A multiple scale 
Schmid filter bank [14] is used for image filtering 

 

    (7) 

      

where τ is the number of cycles of the harmonic function 

within the Gaussian envelop of the filter and r = 

. A texton library is constructed using K-
means on 20 randomly selected NET specimens using the 

image filtering results with Schmid filter bank. 
Considering computational efficiency, an integral 

histogram [15] is utilized to calculate the multiscale 

windowed texton histogram.  
 

Using the texture classification-based probability map, 
each individual cell will obtain a score to evaluate its 

probability belonging to tumor or non-tumor cells (see 

Table I). In addition, the ratio between the probability of 

one cell and the probability average for all its neighboring 

cells provides a measurement of cell category distribution.  
 

As one can expect, the lymphocyte regions will exhibit 

higher probability to be classified as non-tumor patterns, 

which can be discarded before Stage II. In this way, the 

classifier in Stage II will focus more on the challenging 

cases. This improves both computational efficiency and 

classification accuracy. 
 

In Stage II, the mean/standard deviations of pixel 

probabilities in each cell, and the percentage of probability 

summation of one cell over the probability average for all 
cells in its local region are calculated. These statistical 

features are concatenated with the previously predicted 

cellular probabilities in Stage I to train a second SVM 

classifier. The output will produce the labels to 

differentiate tumor from non-tumor cells. 

 

Stage III: Based on the classification in Stage II, the final 

step is to separate immunopositive from immunonegative 

tumor cells. This is achieved by training a final classifier 

for all the Ki-67 positive staining cells using the features 

listed in Stage I in Table I, and cellular intensity histogram 
(a 16-bin intensity histogram separately for each channel, 

as shown in Stage III in Table I) to differentiate the 

immunopositive and immunonegative tumor cells.      
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III. EXPERIMENTAL RESULTS AND DISCUSSION 

 

A. Cell Detection 

Both qualitative and quantitative analyses are conducted 

for the proposed cell detection algorithm. In Fig. 4, 

thousands of cells are correctly detected and segmented on 

several randomly selected image patches, which contains 

both tumor and non-tumor cells.IRV and SPV may fail on 

elongated cells due to the assumption of approximate 

circular objects.  
 

In addition, it is not easy for IRV and SPV to create a 

general rule for parameter selection on one single image 

containing cells with different sizes and shapes. The 

proposed method is compared with four recent state of the 

arts: IRV [10], SPV [11] and the results are shown in 
Fig.5. The proposed algorithm is more robust with respect 

to the variations of cell scale and intensity. This can be 

attributed to the region-based hierarchical voting on the 

distance map. 

 

B. Ki-67 Scoring 

In the experiments at Stage I, circularity ratio, axis ratio, 

color mean, standard deviation, kurtosis, contrast, 

correlation, and homogeneity are selected by the sparse 

representation mode as the most discriminative features to 

separate tumor from non-tumor cells. This indicates that 

for Ki-67 staining, tumor cells intend to exhibit more 
circular shapes than non-tumor cells.  
 

Non-tumors cells often have more inhomogeneous 

textures and lighter staining. The first SVM classifier uses 

a Gaussian kernel (the parameter σ = 0.3 and the penalty c 

= 1) with these selected discriminative features. Combined 

with the texton histogram-based probabilities, a second 

SVM classifier is trained to separate tumor and non-tumor 

cells.  

 

C. Performance Analysis 

The proposed system is compared with an existing system 

[16] and a graph is plotted showing the accuracy of the 

proposed system, Fig. 6. Our method produces best 
performance in terms of mean values, gives smaller 

variance, which demonstrates the strong robustness of the 

proposed automatic Ki-67 counting algorithm.  
 

Proposed method can reliably separate touching cells, and 

many lymphocytes are not discriminated from the true 

immunopositive tumor cells in existing methods, while in 

proposed algorithm these lymphocytes are correctly 

recognized based on accurate cellular level segmentation 

and classification. 

 

IV. CONCLUSION 

 

In this paper, we have introduced an automatic algorithm 

for Ki-67 scoring of digitized NET images. The novel cell 

detection algorithm can efficiently and accurately detect 
thousands of cells on a digitized NET image with Ki-67 

staining. Furthermore, a three-stage learning-based 

approach is designed to differentiate   tumor cells from 

non-tumor cells and immunopositive and immunonegative 

tumor cells for an automatic, accurate, and robust 

quantification of Ki-67 proliferation index. 

 

 
 

Fig. 4 Results of (a) cell detection, (b) segmentation, and 

(c) classification on several randomly selected image 

patches. Some small patches are zoomed in for better 

illustration in (d). Cells with yellow/red contours represent 

immuno positive/immunonegative tumor cells. 
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Fig. 5. Geometric centers of cells (seeds) detection on several randomly selected image patches. Row 1 is the original 

image patches. Rows 2, 3 and 4 correspond to the automatic detection results produced by IRV [10], SPV [11], and the 

proposed algorithm, respectively. The missing or false seeds are highlighted with black dashed rectangles. 

 

 
Fig. 6.  Performance analysis 
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